: informatics , mathematics

The INRIA Project LAB HPC-BigData:
Addressing the HPC/Big-Data/IA
Convergence

Bruno Raffin,
INRIA Grenoble Rhéne-Alpes

Lyon, October 2018

The HPC-BigData Project Lab

An INRIA funded project (2018-2022)

— Gather teams from HPC, Big Data and Machine Learning to work on the
convergence

INRIA teams:

— HPC teams: DataMove, KerData, Tadaam, RealOpt, Hiepacs, Storm, Grid’5000
— |A teams (and Big Data): Zenith, Parietal, Tao, Sequel, Sierra

External partners:

— Academic: Lab Biologie Théorique (CNRS Paris)Academic: Argonne National Lab
(USA)

— Industry: ATOS/Bull, ESI-group

https://project.inria.fr/hpcbigdata/

The Convergence

Three Research Directions:

* Infrastructure and resource management
 HPC acceleration for Al and Big Data

 Al/Big Data analytics for large scale scientific simulations

HPC versus BigData/Al

HPC

Big Data/Al

Parallelism for scalability

—>Performance comes first

- Low level programming
MPI+OpenMP

— Thin software stack

— Stable software libs

- HPC centers

Jobs run a few hours on thousands of
cores:

* Sensitivity Analysis : 30 000 cores for
1h30 [Terraz’17]

* Exastamp material simulation: 8000
cores for a few hours

—> Ease of programming comes first
— High level programming

Spark, Flink, TensorFlow, Pytorch
— Thick software stack
— Quickly changing software libs
— Cloud platforms

Jobs run a few days on tens of nodes:
* Pl@ntNet learning: one week on 4
GPUs

* AlphaGo Zero ltraining: 70 hours on
64 GPU workers and 19CPU
parameter [Silver’17]

* ResNet-50 on 256 GPUs in 1 hour
(mini-batch training) [Goyal 2017]

Some of our Software Assets

. e StarPU
: . Light yet Flexible Task Programming for
Machine Learning in Python Batch Scheduler Hybrid architectures
FlowVR, Melissa, Damaris “" Pl@nt N et

On-line data processing engines Deep Learning based App
for HPC for plant identification

Infrastructure and Resource
Management

HPC Infrastructure for Al:
New needs:

* Accelerators (GPUs or other)

* Large resident data sets (learning & benchmarks) (PlantNet: 10 TB of raw data)
* \Very long runs (days)
* Fast changing software stacks (TensorFlow, PyTorch)

On-going work on Al/HPC compliant resource sharing approaches

Playground: Grid’5000, Genci experimental GPU cluster, etc.

Get data close to the compute nodes:

_a* 3 HPC versus Cloud platforms: External file system versus on-node disks
>~ But changing: on-node persistent storage for energy and performance

(burst buffers, NVRAM): Locality aware resource management

Al/Big Data Analytics for
Large Scale Scientific Simulations

Molecular dynamics trajectory analysis with deep learning:

Dimension reduction through DL
Accelerating MD simulation coupling HPC simulation and DL

Flink/Spark stream processing for in-transit on-line analysis of parallel simulation
outputs (ISAV’18]

HPC for Al

EIH % .!!
Shallow Learning

Accelerating Scikit-Learn with task-based progamming (Dask, StarPU)

Deep Learning:

TensorFlow graph scheduling for efficient parallel executions:

Scheduling for automatic differentiation and backpropagation
Recompute versus store frontward results

Linear algebra and tensors for large scale machine learning

Large scale parallel deep reinforcement learning:

\\\\\\\\\\\\

Parameter Server Learner

DQN Loss
Shard 1 Shard 2 Shard K .
radient (5.2;
nt

Target Q
Network

Replay

Self-learn to play Atari games ' ; Memory

TensorFlow

SGD Tra iner

== Gty —=)
é tearming rate » 10.01) = Gradients
W=, 15 ate
\Entropy ./ m

Logit Layer —~

/a

JilC
i, /

“\
W)
-

(1nput
(Inpu

[Nair et al. 2015]

Artificial Neural Networks

Activation function

fl@) = K (), wigi(z))

X, ; resho
uni
2
X
3
il
n
1
X, § :
n w, W, w, W, - Weights of Connection
X, X, %, X - Inputs | b -Bias

Weight optimization by
stochastic Gradient descent
(backpropagation)

Example x; » Output: o

Compute error on output

Backpropagate error and compute
weight updates

ResNet-34

34-layer residual

image

Deep Learning

7x7 conv, 64, /2

3x3 conv, 128, /2
3x3 conv, 128

3x3 conv, 256, /2 .
Yy
3x3 conv, 256

Today’s neural networks are deep and complex:
N T N

\ input fcaturc; maps feature mapsv"-..'
32x32 28 x 28 14x 14

method error (%) \
Maxout [10] 9.38 \
NIN [25] 8.81 w

DSN [24] 8.22 feature extraction classification

layers | # params
FitNet [35] 19 2.5M 8.39

Highway [42, 43] 19 2.3M 7.54 (7.72+0.16) .
Highway [42.431] 32 | 125M | 8.0 Hyperparameter setting has become

ResNet 20 0.27M | 8.75 :
RN v | osen Lo a very complex task -> learning

ResNet 44| 066M |7.17 for discovering hyperparameters ?
ResNet 56 0.85M 6.97
ResNet 110 1.7M 6.43 (6.614-0.16)

_3)(3 conv, 512
avg pool

[HE-CVPR2016] ==,

Table 6. Classification error on the CIFAR-10 test set. All meth-
ods are with data augmentation. For ResNet-110, we run it 5 times
and show “best (mean=std)” as in [43].

Parallelizing Deep Learning

Parameter update function

b

Generic learning process: Wt= F(D,Wt1)
Learning Data

Model Parameters

Often the parameters updates are computed after presenting a batch of
examples (batch learning)

2 main sources of parallelism:

— Data parallelism: distribute the learning set

— Model parallelism: distribute the model parameters

Data Parallelism

Duplicate the model (one per worker)

o
o
1

W
o
T

(]
o
T

n
o
T

ERNARRRZ4

64 128 256 512 1k 2k 4k 8k 16k 32k 64k
mini-batch size

[Goyal 2017]

n
o

ImageNet top-1 validation error

Partition the batch into P minibatches, one per worker

Compute the
mean of W,

Synchronous update (TensorFlow):

Loop:
Server sends parameters to all Workers;
Workers compute parameter updates

on their mini-batch;

Server get updates from all Workers;
Server compute a global model update;
Server update parameters;

EndLoop

Limitations:
- Server is a bottleneck:
gets P sets of model parameters
- minibatch size affects learning convergence

12

Data Parallelism

Fix the bottleneck: suppress the server and perform a all-reduce

-G

All-Reduce (model weights)

Communication cost per worker is now independent on the number of workers

Baidu initially proposed a modified version of Tensorflow based
on MPI, now available in Horvod (Uber, still Tensorflow+MPI)

13

Data Parallelism:
Asynchronous Updates

Asynchronous Stochastic Gradient Descent:
— Each worker update asynchronously the model parameters
— Proven convergence under certain conditions [Hogwild! 2011]
— But practically convergence may be affected in such a way that it
outweighs the performance gain from asynchronism.

Asyfc. weight
Viemory tHpdales

14

Software 2.0

Software 1.0
— Deterministic computations with algorithms
— Computation must be correct for debugging

Software 2.0 [introduced by A. Karpathy]
— Probabilistic machine-learned models trained from data
— Computation only has to be statistically correct

Creates many opportunities for improved performance

[K. Olukotun Keynote at ISCA 2018]

Software 2.0
[From K. Olukotun

Relax, It’s Only Machine Learning Keynote atISCA 2018]

m Relax synchronization: data races are better
m HogWild! [De Sa, Olukotun, Ré: ICML 2016, ICML Best Paper]
m Relax cache coherence: incoherence is better
m [De Sa, Feldman, Ré, Olukotun: ISCA 2017]
m Relax communication: sparse communication is better
m [Lin, Han et. al.: ICLR 18]
m Relax precision: small integers are better
m HALP [De Sa, Aberger, et. al.]

Chris De Sa

ong Han

—

Better hardware efficiency

Chris Aberger

with negligible impact on statistical efficiency

Leverage the stochastic nature of ML for loosening data dependencies constraints and

thus support better parallelization.
16

