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The HPC-BigData Project Lab 
An INRIA funded project (2018-2022)

– Gather teams from HPC, Big Data and Machine Learning  to work on the 
convergence

INRIA teams:
– HPC teams: DataMove, KerData, Tadaam, RealOpt, Hiepacs, Storm, Grid’5000
– IA teams (and Big Data): Zenith, Parietal, Tao, SequeL, Sierra

External partners: 
– Academic: Lab Biologie Théorique (CNRS Paris)Academic: Argonne National Lab 

(USA)
– Industry: ATOS/Bull, ESI-group

https://project.inria.fr/hpcbigdata/



The Convergence

Three Research  Directions: 

• Infrastructure and resource management 

• HPC acceleration for AI and Big Data

• AI/Big Data analytics for large scale scientific simulations



HPC versus BigData/AI

HPC

→Performance comes first

→ Low level programming

MPI+OpenMP
→ Thin software stack

→ Stable software libs

→ HPC centers

Jobs run a few hours on thousands of 
cores:

• Sensitivity Analysis : 30 000 cores for 
1h30 [Terraz’17]

• Exastamp material simulation: 8000 
cores for a few hours

Big Data/AI

→  Ease of programming comes first

→ High level programming 

Spark, Flink, TensorFlow, Pytorch
→ Thick  software stack

→ Quickly changing software libs 

→ Cloud platforms

Jobs run a few days  on tens of nodes:

• Pl@ntNet learning: one week on 4 
GPUs

• AlphaGo Zero ltraining:  70 hours on  
64 GPU workers and 19CPU 
parameter [Silver’17]

• ResNet-50 on 256 GPUs in 1 hour 
(mini-batch training) [Goyal 2017] 

Parallelism for scalability



Some of our Software Assets

Machine Learning in Python Light yet Flexible
Batch Scheduler

Deep Learning based App
for plant identification

FlowVR, Melissa, Damaris 

StarPU

Task Programming for
Hybrid architectures

On–line data processing engines 
for HPC



Infrastructure and Resource 
Management 

HPC Infrastructure for AI:
New needs:  

• Accelerators (GPUs or other)

• Large resident data sets (learning & benchmarks)   (PlantNet: 10 TB of raw data)

• Very long runs (days)

• Fast changing software stacks (TensorFlow, PyTorch)

On-going work on AI/HPC compliant resource sharing approaches

Playground: Grid’5000, Genci experimental GPU cluster, etc.

Get data close to the compute nodes:
HPC versus Cloud platforms: External file system versus on-node disks 
But changing: on-node persistent storage for energy and performance 

(burst buffers, NVRAM): Locality aware resource management



Molecular dynamics trajectory analysis with deep learning:

Dimension reduction through DL
Accelerating MD simulation coupling HPC simulation and DL

Flink/Spark stream processing for in-transit on-line analysis of parallel simulation 
outputs

AI/Big Data Analytics for 
Large Scale Scientific Simulations

[ISAV’18]



Shallow Learning
Accelerating Scikit-Learn with task-based  progamming (Dask, StarPU)

Deep Learning: 
TensorFlow graph scheduling for efficient parallel executions: 

Scheduling for  automatic differentiation and backpropagation
Recompute versus store frontward results 

Linear algebra and tensors for  large scale machine learning

Large scale parallel deep reinforcement learning: 

HPC for AI

Massively Parallel Methods for Deep Reinforcement Learning

Figure 2. The Gorila agent parallelises the training procedure by separating out learners, actors and parameter server. In a single exper-
iment, several learner processes exist and they continuously send the gradients to parameter server and receive updated parameters. At
the same time, independent actors can also in parallel accumulate experience and update their Q-networks from the parameter server.

Each actor contains a replica of the Q-network, which is
used to determine behavior, for example using an ✏-greedy
policy. The parameters of the Q-network are synchronized
periodically from the parameter server.

Experience replay memory. The experience tuples eit =
(sit, a

i
t, r

i
t, s

i
t+1) generated by the actors are stored in a re-

play memory D. We consider two forms of experience
replay memory. First, a local replay memory stores each
actor’s experience Di

t = {ei1, ..., eit} locally on that ac-
tor’s machine. If a single machine has sufficient memory
to store M experience tuples, then the overall memory ca-
pacity becomes MNact. Second, a global replay memory
aggregates the experience into a distributed database. In
this approach the overall memory capacity is independent
of Nact and may be scaled as desired, at the cost of addi-
tional communication overhead.

Learners. Gorila contains Nlearn learner processes. Each
learner contains a replica of the Q-network and its job is
to compute desired changes to the parameters of the Q-
network. For each learner update k, a minibatch of experi-
ence tuples e = (s, a, r, s0) is sampled from either a local
or global experience replay memory D (see above). The
learner applies an off-policy RL algorithm such as DQN
(Mnih et al., 2013) to this minibatch of experience, in or-
der to generate a gradient vector gi.1 The gradients gi are
communicated to the parameter server; and the parameters

1The experience in the replay memory is generated by old be-
havior policies which are most likely different to the current be-
havior of the agent; therefore all updates must be performed off-
policy (Sutton & Barto, 1998).

of the Q-network are updated periodically from the param-
eter server.

Parameter server. Like DistBelief, the Gorila architecture
uses a central parameter server to maintain a distributed
representation of the Q-network Q(s, a; ✓+). The param-
eter vector ✓+ is split disjointly across Nparam different
machines. Each machine is responsible for applying gra-
dient updates to a subset of the parameters. The parame-
ter server receives gradients from the learners, and applies
these gradients to modify the parameter vector ✓+, using
an asynchronous stochastic gradient descent algorithm.

The Gorila architecture provides considerable flexibility in
the number of ways an RL agent may be parallelized. It is
possible to have parallel acting to generate large quantities
of data into a global replay database, and then process that
data with a single serial learner. In contrast, it is possible
to have a single actor generating data into a local replay
memory, and then have multiple learners process this data
in parallel to learn as effectively as possible from this expe-
rience. However, to avoid any individual component from
becoming a bottleneck, the Gorila architecture in general
allows for arbitrary numbers of actors, learners, and param-
eter servers to both generate data, learn from that data, and
update the model in a scalable and fully distributed fashion.

The simplest overall instantiation of Gorila, which we con-
sider in our subsequent experiments, is the bundled mode
in which there is a one-to-one correspondence between ac-
tors, replay memory, and learners (Nact = Nlearn). Each
bundle has an actor generating experience, a local replay

Self-learn to play Atari games [Nair et al. 2015]

TensorFlow



Artificial Neural Networks

9

Weight optimization by 
stochastic Gradient descent
(backpropagation)

Example xi
Output: oi

Compute error on output 

Backpropagate error and compute 
weight  updates

Activation function



Deep Learning

Today’s neural networks are deep and complex:
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Figure 3. Example network architectures for ImageNet. Left: the
VGG-19 model [41] (19.6 billion FLOPs) as a reference. Mid-

dle: a plain network with 34 parameter layers (3.6 billion FLOPs).
Right: a residual network with 34 parameter layers (3.6 billion
FLOPs). The dotted shortcuts increase dimensions. Table 1 shows
more details and other variants.

Residual Network. Based on the above plain network, we
insert shortcut connections (Fig. 3, right) which turn the
network into its counterpart residual version. The identity
shortcuts (Eqn.(1)) can be directly used when the input and
output are of the same dimensions (solid line shortcuts in
Fig. 3). When the dimensions increase (dotted line shortcuts
in Fig. 3), we consider two options: (A) The shortcut still
performs identity mapping, with extra zero entries padded
for increasing dimensions. This option introduces no extra
parameter; (B) The projection shortcut in Eqn.(2) is used to
match dimensions (done by 1⇥1 convolutions). For both
options, when the shortcuts go across feature maps of two
sizes, they are performed with a stride of 2.

3.4. Implementation

Our implementation for ImageNet follows the practice
in [21, 41]. The image is resized with its shorter side ran-
domly sampled in [256, 480] for scale augmentation [41].
A 224⇥224 crop is randomly sampled from an image or its
horizontal flip, with the per-pixel mean subtracted [21]. The
standard color augmentation in [21] is used. We adopt batch
normalization (BN) [16] right after each convolution and
before activation, following [16]. We initialize the weights
as in [13] and train all plain/residual nets from scratch. We
use SGD with a mini-batch size of 256. The learning rate
starts from 0.1 and is divided by 10 when the error plateaus,
and the models are trained for up to 60⇥ 104 iterations. We
use a weight decay of 0.0001 and a momentum of 0.9. We
do not use dropout [14], following the practice in [16].

In testing, for comparison studies we adopt the standard
10-crop testing [21]. For best results, we adopt the fully-
convolutional form as in [41, 13], and average the scores
at multiple scales (images are resized such that the shorter
side is in {224, 256, 384, 480, 640}).

4. Experiments

4.1. ImageNet Classification

We evaluate our method on the ImageNet 2012 classifi-
cation dataset [36] that consists of 1000 classes. The models
are trained on the 1.28 million training images, and evalu-
ated on the 50k validation images. We also obtain a final
result on the 100k test images, reported by the test server.
We evaluate both top-1 and top-5 error rates.

Plain Networks. We first evaluate 18-layer and 34-layer
plain nets. The 34-layer plain net is in Fig. 3 (middle). The
18-layer plain net is of a similar form. See Table 1 for de-
tailed architectures.

The results in Table 2 show that the deeper 34-layer plain
net has higher validation error than the shallower 18-layer
plain net. To reveal the reasons, in Fig. 4 (left) we com-
pare their training/validation errors during the training pro-
cedure. We have observed the degradation problem - the
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34-layer net with this 3-layer bottleneck block, resulting in
a 50-layer ResNet (Table 1). We use option B for increasing
dimensions. This model has 3.8 billion FLOPs.

101-layer and 152-layer ResNets: We construct 101-
layer and 152-layer ResNets by using more 3-layer blocks
(Table 1). Remarkably, although the depth is significantly
increased, the 152-layer ResNet (11.3 billion FLOPs) still
has lower complexity than VGG-16/19 nets (15.3/19.6 bil-
lion FLOPs).

The 50/101/152-layer ResNets are more accurate than
the 34-layer ones by considerable margins (Table 3 and 4).
We do not observe the degradation problem and thus en-
joy significant accuracy gains from considerably increased
depth. The benefits of depth are witnessed for all evaluation
metrics (Table 3 and 4).

Comparisons with State-of-the-art Methods. In Table 4
we compare with the previous best single-model results.
Our baseline 34-layer ResNets have achieved very compet-
itive accuracy. Our 152-layer ResNet has a single-model
top-5 validation error of 4.49%. This single-model result
outperforms all previous ensemble results (Table 5). We
combine six models of different depth to form an ensemble
(only with two 152-layer ones at the time of submitting).
This leads to 3.57% top-5 error on the test set (Table 5).
This entry won the 1st place in ILSVRC 2015.

4.2. CIFAR-10 and Analysis

We conducted more studies on the CIFAR-10 dataset
[20], which consists of 50k training images and 10k test-
ing images in 10 classes. We present experiments trained
on the training set and evaluated on the test set. Our focus
is on the behaviors of extremely deep networks, but not on
pushing the state-of-the-art results, so we intentionally use
simple architectures as follows.

The plain/residual architectures follow the form in Fig. 3
(middle/right). The network inputs are 32⇥32 images, with
the per-pixel mean subtracted. The first layer is 3⇥3 convo-
lutions. Then we use a stack of 6n layers with 3⇥3 convo-
lutions on the feature maps of sizes {32, 16, 8} respectively,
with 2n layers for each feature map size. The numbers of
filters are {16, 32, 64} respectively. The subsampling is per-
formed by convolutions with a stride of 2. The network ends
with a global average pooling, a 10-way fully-connected
layer, and softmax. There are totally 6n+2 stacked weighted
layers. The following table summarizes the architecture:

output map size 32⇥32 16⇥16 8⇥8
# layers 1+2n 2n 2n
# filters 16 32 64

When shortcut connections are used, they are connected
to the pairs of 3⇥3 layers (totally 3n shortcuts). On this
dataset we use identity shortcuts in all cases (i.e., option A),

method error (%)
Maxout [10] 9.38

NIN [25] 8.81
DSN [24] 8.22

# layers # params
FitNet [35] 19 2.5M 8.39

Highway [42, 43] 19 2.3M 7.54 (7.72±0.16)
Highway [42, 43] 32 1.25M 8.80

ResNet 20 0.27M 8.75
ResNet 32 0.46M 7.51
ResNet 44 0.66M 7.17
ResNet 56 0.85M 6.97
ResNet 110 1.7M 6.43 (6.61±0.16)
ResNet 1202 19.4M 7.93

Table 6. Classification error on the CIFAR-10 test set. All meth-
ods are with data augmentation. For ResNet-110, we run it 5 times
and show “best (mean±std)” as in [43].

so our residual models have exactly the same depth, width,
and number of parameters as the plain counterparts.

We use a weight decay of 0.0001 and momentum of 0.9,
and adopt the weight initialization in [13] and BN [16] but
with no dropout. These models are trained with a mini-
batch size of 128 on two GPUs. We start with a learning
rate of 0.1, divide it by 10 at 32k and 48k iterations, and
terminate training at 64k iterations, which is determined on
a 45k/5k train/val split. We follow the simple data augmen-
tation in [24] for training: 4 pixels are padded on each side,
and a 32⇥32 crop is randomly sampled from the padded
image or its horizontal flip. For testing, we only evaluate
the single view of the original 32⇥32 image.

We compare n = {3, 5, 7, 9}, leading to 20, 32, 44, and
56-layer networks. Fig. 6 (left) shows the behaviors of the
plain nets. The deep plain nets suffer from increased depth,
and exhibit higher training error when going deeper. This
phenomenon is similar to that on ImageNet (Fig. 4, left) and
on MNIST (see [42]), suggesting that such an optimization
difficulty is a fundamental problem.

Fig. 6 (middle) shows the behaviors of ResNets. Also
similar to the ImageNet cases (Fig. 4, right), our ResNets
manage to overcome the optimization difficulty and demon-
strate accuracy gains when the depth increases.

We further explore n = 18 that leads to a 110-layer
ResNet. In this case, we find that the initial learning rate
of 0.1 is slightly too large to start converging5. So we use
0.01 to warm up the training until the training error is below
80% (about 400 iterations), and then go back to 0.1 and con-
tinue training. The rest of the learning schedule is as done
previously. This 110-layer network converges well (Fig. 6,
middle). It has fewer parameters than other deep and thin

5With an initial learning rate of 0.1, it starts converging (<90% error)
after several epochs, but still reaches similar accuracy.
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[HE-CVPR2016]

ResNet-34

Hyperparameter setting has become
a very complex task -> learning 
for discovering hyperparameters ?



Parallelizing Deep Learning

Generic learning process: Wt = F(D,Wt-1)

Often the parameters updates are computed after presenting a batch of    
examples (batch learning)

2 main sources of parallelism:
– Data parallelism: distribute the learning set
– Model parallelism: distribute the model parameters

11

Parameter update function

Learning Data
Model Parameters



Data Parallelism
Duplicate the model (one per worker)

Partition the batch into P minibatches, one per worker

12

Server

Worker

Worker

Worker

Worker

Synchronous update (TensorFlow):

Loop:
Server sends parameters  to all Workers;
Workers compute parameter updates

on their mini-batch;
Server  get updates from all Workers;
Server compute a global model update;
Server update parameters;

EndLoop

Limitations: 
- Server is  a bottleneck: 
gets P sets of model parameters

- minibatch size affects learning convergence 

Accurate, Large Minibatch SGD:
Training ImageNet in 1 Hour

Priya Goyal Piotr Dollár Ross Girshick Pieter Noordhuis
Lukasz Wesolowski Aapo Kyrola Andrew Tulloch Yangqing Jia Kaiming He

Facebook

Abstract

Deep learning thrives with large neural networks and

large datasets. However, larger networks and larger

datasets result in longer training times that impede re-

search and development progress. Distributed synchronous

SGD offers a potential solution to this problem by dividing

SGD minibatches over a pool of parallel workers. Yet to

make this scheme efficient, the per-worker workload must

be large, which implies nontrivial growth in the SGD mini-

batch size. In this paper, we empirically show that on the

ImageNet dataset large minibatches cause optimization dif-

ficulties, but when these are addressed the trained networks

exhibit good generalization. Specifically, we show no loss

of accuracy when training with large minibatch sizes up to

8192 images. To achieve this result, we adopt a linear scal-

ing rule for adjusting learning rates as a function of mini-

batch size and develop a new warmup scheme that over-

comes optimization challenges early in training. With these

simple techniques, our Caffe2-based system trains ResNet-

50 with a minibatch size of 8192 on 256 GPUs in one hour,

while matching small minibatch accuracy. Using commod-

ity hardware, our implementation achieves ⇠90% scaling

efficiency when moving from 8 to 256 GPUs. This system

enables us to train visual recognition models on internet-

scale data with high efficiency.

1. Introduction

Scale matters. We are in an unprecedented era in AI
research history in which the increasing data and model
scale is rapidly improving accuracy in computer vision
[22, 40, 33, 34, 35, 16], speech [17, 39], and natural lan-
guage processing [7, 37]. Take the profound impact in com-
puter vision as an example: visual representations learned
by deep convolutional neural networks [23, 22] show excel-
lent performance on previously challenging tasks like Im-
ageNet classification [32] and can be transferred to diffi-
cult perception problems such as object detection and seg-
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Figure 1. ImageNet top-1 validation error vs. minibatch size.
Error range of plus/minus two standard deviations is shown. We
present a simple and general technique for scaling distributed syn-
chronous SGD to minibatches of up to 8k images while maintain-

ing the top-1 error of small minibatch training. For all minibatch
sizes we set the learning rate as a linear function of the minibatch
size and apply a simple warmup phase for the first few epochs of
training. All other hyper-parameters are kept fixed. Using this
simple approach, accuracy of our models is invariant to minibatch
size (up to an 8k minibatch size). Our techniques enable a lin-
ear reduction in training time with ⇠90% efficiency as we scale
to large minibatch sizes, allowing us to train an accurate 8k mini-
batch ResNet-50 model in 1 hour on 256 GPUs.

mentation [8, 10, 27]. Moreover, this pattern generalizes:
larger datasets and network architectures consistently yield
improved accuracy across all tasks that benefit from pre-
training [22, 40, 33, 34, 35, 16]. But as model and data
scale grow, so does training time; discovering the poten-
tial and limits of scaling deep learning requires developing
novel techniques to keep training time manageable.

The goal of this report is to demonstrate the feasibility
of and to communicate a practical guide to large-scale train-
ing with distributed synchronous stochastic gradient descent
(SGD). As an example, we scale ResNet-50 [16] train-
ing, originally performed with a minibatch size of 256 im-
ages (using 8 Tesla P100 GPUs, training time is 29 hours),
to larger minibatches (see Figure 1). In particular, we
show that with a large minibatch size of 8192, using 256

GPUs, we can train ResNet-50 in 1 hour while maintain-

1

[Goyal 2017]
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Data Parallelism

Fix the bottleneck:  suppress the server and perform a all-reduce

Baidu initially proposed  a  modified version of Tensorflow based 
on MPI, now available in Horvod (Uber, still Tensorflow+MPI)
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Worker Worker WorkerWorker

Communication cost per worker  is now independent on the number of workers

All-Reduce (model weights) 



Data Parallelism:

Asynchronous Updates

Asynchronous Stochastic Gradient Descent:

– Each worker update asynchronously the model parameters

– Proven convergence under certain conditions [Hogwild! 2011] 

– But practically convergence may be affected in such a way that it 

outweighs the performance gain from asynchronism.
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Shared 

Memory
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Software 2.0
Software 1.0 

– Deterministic computations with algorithms
– Computation must be correct for debugging 

Software 2.0 [introduced by A. Karpathy]
– Probabilistic machine-learned models trained from data
– Computation only has to be statistically correct 

Creates many opportunities for improved performance 
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[K. Olukotun Keynote at ISCA 2018]



Software 2.0
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[From K. Olukotun
Keynote at ISCA 2018]

Leverage the stochastic nature of ML for loosening data dependencies constraints and
thus support better parallelization. 


